# **CCS Technical Documentation NAM-2 Series Transceivers** # **UI Module** Issue 1 12/02 ©Nokia Corporation **CCS Technical Documentation** [This page left intentionally blank] # **Table of Contents** | *** | Page No | |----------------------------------|---------| | UI section | | | Introduction | 4 | | BB Interface | 4 | | LCD Module Interface | 6 | | Bottom Connector signals | 7 | | Functional Description | 8 | | Audio control | 8 | | External audio connections | 8 | | Analog audio accessory detection | | | Headset detection | 10 | | Headset switch detection | 10 | | PPH-1 detection | 10 | | Display Circuit | 11 | | Keyboard | | | Power Key | | | Backlighting | | | Buzzer | | | Speaker | | | Microphone | 16 | | Vibra Alerting Device | 17 | # **UI** section #### Introduction UI module is implemented on same PWB board with BB-module and RF-module. UI HW part are LCD, backlighting, audio parts, keyboard, power key and vibra. #### **BB** Interface | Signal | Parameter | Min | Тур | Max | Unit | Notes | |-----------|-----------------|----------------|-----|------------------|------|---------------------------------| | VIBRA | From VB | 0.9 | 1.0 | 1.1 | V | | | | | | 115 | 140 | mA | | | ROW (0:4) | Rows | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | V | Keyboard matrix<br>row | | COL (0:4) | COLO | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | Keyboard matrix column | | VB | Battery voltage | 3.0 | | 4.8 | | Battery voltage<br>(for lights) | | PWRONX | Power on signal | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | V | Power on key | |----------------|-------------------------|----------------|------|------------------|----|----------------------------------------------------------------| | ROW5/<br>LCDCD | LCD command / data | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | Keyboard matrix<br>row 5<br>LCD driver code/<br>data selection | | SCL | Serial clock for<br>LCD | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | LCD driver serial clock | | SDA | Serial data for LCD | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | LCD driver serial data | | LCDEN | LCD enable | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | LCD driver chip select | | LCDRSTX | Reset | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | LCD driver reset | | GND | | 0 | | 0 | | Ground | | BUZZER | | 0 | | 0.3 x VBB | | PWM low level | | | | 0.7 x VBB | | VBB | | PWM high level | | | | 440 | | 4700 | Hz | Buzzer PWM fre-<br>quency | | | | 0 | | 50 | % | PWM duty cycle | | VBB | | 2.7 | 2.8 | 2.9 | V | Logic supply volt age | | LIGHT | | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | Illumination con-<br>trol | | EARN | | | 17.6 | 788 | mV | Connected to<br>COBBA EARN out-<br>put. | | EARP | | | 17.6 | 788 | mV | Connected to<br>COBBA EARP out-<br>put. | | ССИТ | Charging control | 0<br>0.7 x VBB | | 0.3 x VBB<br>VBB | | Stops charging | # **LCD Module Interface** | Pin | Line<br>Symbol | Parameter | Mini<br>mum | Typical /<br>Nominal | Maxi<br>mum | Unit | Notes | |-----|----------------|-------------------------------------|-------------|----------------------|-------------|------|------------| | 1 | VBB | Supply voltage | 2.7 | 2.8 | 2.9 | V | | | | | | | | 300 | uA | | | 2 | SCLK | Serial clock input | 0 | | 4.0 | MHz | VBB = 2.7V | | | | | 0 | | VBB | V | | | 3 | SDA | Serial data input | 0 | | 0.3xVBB | | | | | | | 0.7xVBB | | VBB | | | | 4 | LCDCDX | Control/display data | 0 | | 0.3xVBB | | Control | | | | flag input | 0.7xVBB | | VBB | | Data | | 5 | LCDCSX | Chip select input | 0 | | 0.3xVBB | | Active | | | | | 0.7xVBB | | VBB | | | | 6 | GND | Ground | | 0 | | V | | | 7 | VOUT | DC/DC voltage con-<br>verter output | | | 9 | | | | 8 | LCDRSTX | Reset | 0 | | 0.3xVBB | | Active | | | | | 0.7xVBB | | VBB | | | LCD module interface numbering order: Green: Samsung; Red: Seiko Epson; Blue: Philips #### **Bottom Connector signals** | Name | Min | Тур | Max | Unit | Notes | |---------|------|-----|------|------|---------------------------------------| | XMICP, | | 2.2 | | kΩ | Input AC impedance | | XMICN | | | 1 | Vpp | Maximum signal level | | | 1.47 | | 1.55 | V | Mute (output DC level) | | | 2.5 | | 2.9 | V | Unmute (output DC level) | | | 100 | | 600 | μΑ | Bias current | | | | 60 | 350 | mV | Maximum signal level | | XEARP, | | 47 | | W | Output AC impedance (ref. GND) | | XEARN | | 10 | | μF | Series output capacitance | | | 16 | | 300 | W | Load AC impedance to GND (Headset) | | | | 6.8 | | kΩ | Load AC impedance to GND (Accessory) | | | | | 1.0 | Vpp | Maximum output level (no load) | | | | 22 | 626 | mV | Output signal level | | | | 10 | | kΩ | Load DC resistance to GND (Accessory) | | | 16 | | 1500 | W | Load DC resistance to GND (Headset) | | | | 2.8 | | V | DC voltage (100k pull-up to VBB) | | HEADDET | | 21 | | uA | When accessory is not connected | An external headset device is connected to the system connector XMIC and XEAR lines, from which the signals are routed to COBBA MIC3 microphone inputs and HF earphone outputs. #### **Functional Description** #### Audio control The audio control and processing is taken care by the COBBA-GJP, which contains the audio (and RF codes, and the MAD2, which contains the MCU, ASIC and DSP blocks handling and processing the audio signals. The baseband supports three microphone inputs and two earphone out puts. The inputs can be taken from an internal microphone, a headset microphone or PPH-1 microphones. The microphone signals from different sources are connected to separate inputs at the COBBA-GJP ASIC. In puts for the microphone signals are differential type. The MIC1 inputs are used for a headset microphone that can be connected directly to the HS/HF connector. The internal microphone is connected to MIC2 inputs. In COBBA there are also three audio signal out puts of which dual ended EAR lines are used for internal earpiece and HF line for accessory audio output. The third audio output AUXOUT is used for bias supply to the headset microphone. PData(2) is used for PPH-1 mute control. The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. The output for the external accessory and the headset is dual ended (differential). Input and output signal source selection and gain control is performed inside the COBBA-GJP asic according to control messages from the MAD2. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD2 and transmitted to the COBBA-GJP for decoding. #### External audio connections The external audio connections are presented on the next page. A head set and PPH-1 can be connected directly to the system connector. The headset microphone bias is supplied from COBBA AUXOUT output and fed to microphone through XMICP line. NOKIA #### Analog audio accessory detection In XEARP signal there is a 100 kW pull-up and 33k pull-down in the transceiver for HeadDet. The HeadDet is pulled up when an accessory is connected, and pulled down when disconnected. To get HeadDet work properly the system connector must be assembled otherwise the transceiver will assume that some accessory is connected. In XMICN signal there is a 1.2 kW pull-down in transceiver and serial 1.2 kW from AUXOUT to XMICP. The XMICN is connected to transistor which is then connected to the HookDet line (in MAD). External accessory notices powered-up phone by detecting voltage in HeadDet line. | Accessory connected | HookDet*) | HeadDet**) | Notes | |---------------------------------------|-----------|------------|---------------------------| | No accessory connected | High | Low | | | Headset with a button switch pressed | Low | High | XEAR and XMIC loaded (dc) | | Headset with a button switch released | High | High | XEAR and XMIC loaded (dc) | | Handsfree (PPH-1) | Low | High | XMIC loaded (dc) | <sup>\*)</sup> HookDet is used only for detect button in headset Note: Charging must stop when the detection sequences is done! CCUT signal at high stops charging. #### Headset detection The external headset device is connected to the headset connector, from which the signals are routed to COBBA headset microphone inputs and earphone outputs. In the XMICN line there is a 1.0 kW pull-down in the transceiver. The microphone is a low resistance pull-up compared to the transceiver pull-down. When there is no call going, the AUXOUT is in high impedance state and the XMICN and XMICP is pulled down. When a headset is connected, the XMICP is pulled up. The switch inside the system connector is connected to the HeadDet line (in MAD), an interrupt is given due to both connection and disconnection. Note: If the headset is connected switch closed the transceiver can not detect if headset or PPH-1 in power off mode is connected. When switch is released to open transceiver can not any more detect the headset with out polling by SW. #### Headset switch detection In the XMICN line there is a 1.0 kW pull-down in the transceiver. The microphone is a low resistance pull-up compared to the transceiver pull down. When a remote control switch is open, there is a capacitor in parallel with the microphone, so the XMICN is pulled up and HookDet pulled down by the phone, when AUXOUT is set to 2.1V. When the switch is closed, the XMICN is pulled down via the microphone and HookDet is pulled up. So both press and release of the button gives an interrupt when AUXOUT is set to 2.1V. #### PPH-1 detection The external Plug & Play PPH-1 device is connected to the system connector, from which the signals are routed to COBBA headset microphone inputs and earphone outputs. In <sup>\*\*)</sup> HeadDet is used only for detect that some accessory is connected into system connector the XMICN line there is a 1.0 kW pull down in the transceiver. The PPH-1 has a low resistance pull-up compared to the transceiver pull-down. When there is no call going, the AUXOUT is in high impedance state and the XMICN and XMICP is pulled down. When a powered PPH-1 is connected, the XMICP is pulled up. The switch inside the system connector is connected to the HeadDet line (in MAD), an interrupt is given due to both connection and disconnection. In PPH-1 device has two operating mode device with external micro phone and without external microphone. When internal microphone is used the detection signal (EAD) is higher than when external microphone is used. Note I: If the PPH-1 is connected power off mode the transceiver can not detect if device is a headset or a PPH-1 connected. When PPH-1 is powered on it is possible to detect when case of PPH-1. Note II: If the external microphone is connected from or disconnected to PPH-1 it is not possible for transceiver to detect when that happens. #### Internal audio connections The speech coding functions are performed by the DSP in the MAD2 and the coded speech blocks are transferred to the COBBA for digital to ana log conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA by the DSP. #### **Display Circuit** The display circuit includes LCD module 96X54 RAM and two capacitors. The LCD module is COG (Chip on Glass) technology. The connection method for chip on the glass is ACF, Adhesive Conductive Film. The LCD module is connected to UI board with connector. Capacitors are placed on PWB. The display driver includes hw-reset, voltage tripler or quadrupler which depends on temperature, temperature compensating circuit and low power control. Driver includes 96X54 RAM memory which is used when some elements are create on display. Elements can be created with software. Driver doesn't include CG-ROM. One bit in RAM is same as one pixel on display. # Keyboard Matrix size is 5 row and 5 columns. Scanning is used for keyboard reading. Rows and columns is connected to MAD interface. # Keyboard Matrix | ROW/COL | 0 | 1 | 2 | 3 | 4 | |---------|------------|-----------|------|----------|------------| | 0 | NC | NC | Send | End/Mode | NC | | 1 | NC | Soft left | Up | Down | Soft Right | | 2 | NC | 1 | 4 | 7 | * | | 3 | NC | 2 | 5 | 8 | 0 | | 4 | PWR switch | 3 | 6 | 9 | # | NC = Not Connected # UI Module #### **Power Key** Micro switch is used as a power key on UI module. Circuitry includes micro switch and two diodes which is needed for MAD interface. Power key is connected to CCONT. Power switch is active in LOW state. Power key is connected to ROW4. #### **Backlighting** Switching circuits for backlighting are placed on UI module. Display and keyboard lighting is connected together. When LIGHT-signal is HIGH the lights are on and when LIGHT-signal is LOW state lights are off. Backlighting is made by LEDs, three LEDs on the bottom of the display. Light is on when LIGHT-signal is in HIGH state. In keyboard backlighting is made by 6 LEDs. Backlighting is on when LIGHT-signal is on HIGH state. #### Buzzer Alerting tones and/or melodies as a signal of an incoming call are generated with a buzzer that is controlled with a PWM signal by the MAD via UISWITCH. Also keypress and user function response beeps are generated with the buzzer. The buzzer is a SMD device and is placed on the motherboard. Target for SPL is 100dB (A) at 5cm. #### **Speaker** Speaker circuit includes pads for speaker and 2 capacitors, 2 ferrites for EMC protection. Speaker is sealed to A-cover with gasket and UI PWB with supporting ring. With that the frequency response is more constant. Speaker does not need holes for PWB. This gives reliable sound quality for the phone and it can be estimated in several environments. Arrangement is not a leak tolerant speaker. The low impedance, dynamic type earphone is connected to a differential output in the COBBA audio codec. The electrical specifications for the earphone output are shown below. The voltage level at each output is given as reference to ground. Earphone levels are given to 32 ohm load. | | Nominal | Maximum | Notes | |------------------------------------------------------------|---------|---------|---------------------------------------------------| | COBBA output, differen-<br>tial, 6dB gain | 17.6mV | 788mV | ENGINE - UI Interface | | Earpiece sound pressure<br>(sensitivity +28dBPa/V<br>1kHz) | -7dBPa | +26dBPa | Measured as shielded (in brackets with leak ring) | #### Microphone The internal microphone is placed to slide. Microphone is OMNI directional. The microphone requires a bias current to operate. The bias current is generated from VCOBBA supply with a transistor. EMC protection parts are implemented partly in slide and partly on motherboard. | Pin | Name | Min | Тур | Max | Unit | Notes | |--------|------|-----|------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | X300/2 | MICP | | 0.55 | 4.1 | mV | Connected to COBBA MIC2N input. The maximum value corresponds to 1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maximum value - 16 dB. | | X300/1 | MICN | | 0.55 | 4.1 | mV | Connected to COBBA MIC2P input. The maximum value corresponds to 1 kHz, 0 dBmO network level with input amplifier gain set to 32 dB. typical value is maximum value - 16 dB. | #### Vibra Alerting Device A vibra alerting device is used for giving silent signal to the user of an in coming call. Vibra is located in the phone. The vibra is controlled with a PWM signal by the MAD via UISWITCH. | Signal | Parameter | Min | Тур | Max | Unit | Notes | |--------------------|--------------------|------|------|-------|------|----------------------------| | M300 / 1 | | 1.0 | 1.1 | 2.0 | V | Measured against<br>M300/2 | | I <sub>vibra</sub> | Rated load current | | 115 | 140 | mA | | | | Rated load speed | 7000 | 8000 | 12000 | rpm | | [This page intentionally left blank).